Capturing the Effects of Liquefaction-Induced Ground Deformation

Jonathan D. Bray, Ph.D., P.E., NAE

Faculty Chair in Earthquake Engineering Excellence University of California, Berkeley

Geotechnical Extreme Events Reconnaissance *Turning Disaster into Knowledge*

www.geerassociation.org

Effects of the 1999 Kocaeli Earthquake: Adapazari

City of Adapazari

Post-EQs Surveys

Rapid Field Survey Procedures

Structural Damage Index (modified from Coburn and Spence, 1992)		
Index	Description	Interpretation
D0	No Observable Damage	No cracking, broken glass, or architectural damage, etc.
D1	Light Damage	Cosmetic cracking, no observable distress to load bearing structural elements
D2	Moderate	Cracking in load bearing elements, but no significant
	Damage	displacements across these cracks
D3	Heavy	Cracking in load bearing elements with significant deformations
	Damage	across the cracks
D4	Partial	Collapse of a portion of the building in plan view (i.e., a corner,
	Collapse	or a wing of building)
D5	Collapse	Collapse of the complete structure or loss of a floor of the
		structure

Ground Failure Index (after Bray and Stewart, 2000)

Index	Description	Interpretation
GF0	No Observable	No settlement, tilt, lateral movement, or sediment ejecta
	Ground Failure	
GF1	Minor Ground	Settlement, Δ < 10 cm; Tilt < 1 degree; no lateral
	Failure	movements
GF2	Moderate Ground	10 cm < Δ < 25 cm; Tilt of 1-3 degrees; small lateral
	Failure	movements (< 10 cm)
GF3	Significant Ground	Δ > 25 cm; Tilt of > 3 degrees; Lateral movement > 25 cm
	Failure	

166 CPT/SCPTu & 61 BORINGS with SPT

< http://peer.berkeley.edu/turkey/adapazari >

Sancio et al. 2002

New Liquefaction Susceptibility Criteria

Chinese Criteria

(Seed and Idriss 1982 in Youd et al. 2001)

PI & w_c/LL Criteria (Bray & Sancio 2006) Susceptible: PI \leq 12 & $w_c/LL \geq$ 0.85 Moderate Susceptibility: $w_c/LL > 0.8 \& 12 < PI \leq 20$

Effects of Ground Failure on Buildings – 2010 Chile EQ (M_w= 8.8) **Hospital in Curanilahue**

Building Displacement Measurements

Effects of Ground Failure on Buildings – 2010 Chile EQ Four 8-Story Condominiums, Concepcion

Foundation Settlement and Building Damage

Bray, Arduino, Hutchinson, & Maureira

Foundation Settlement and Building Damage

Kayen

Liquefaction-Induced Building Movements 2011 Tohoku, Japan EQ (M_w = 9.0)

Tokimatsu et al. & GEER (Ashford et al. 2011)

2010-11 Canterbury EQs: Widespread Liquefaction

0

Cubrinovski, Bray, Green, O'Rourke, Zupan, Taylor, Bradley et al.

Liquefaction Effects in Christchurch

From M. Cubrinovski

Permanent Ground Displacements (LiDAR)

Cubrinovski et al.

Ground Surveying Measurements (GSM)

Captures details of local spreading features within 150 m (200 m) from the river.

Cubrinovski et al.

Liquefaction Effects on Structures

Tilting and Sliding of Buildings

Settlement of Ground next to Piled Bldg.

Cracking due to Differential Settlement

Uniform Settlement of Building

CTUC Building

Liquefaction-Induced Differential Settlement Induces Distress

Building Settlement

GEER: Bray, Cubrinovski et al.

CTUC Building Liquefaction-Induced Differential Settlement

Building Settlement (cm) Maximum Angular Distortion ≈ 1/50

CTUC Building: Christchurch EQ

2011 Christchurch EQ: Robertson & Wride (1998)

Liquefaction of Shallow Soil Deposits

Liquefaction in Christchurch

Relative lack of liquefaction

(van Ballegooy et al. 2014)

Non-Liquefaction of Silty Soil Sites

Site 23

site where no liquefaction effects were observed; yet simplified procedures indicate liquefaction was expected

(from R. Wentz, Wentz-Pacific)

Documenting Sediment Ejecta

CentrePort Wellington – 2016 Kaikoura EQ Aerial Survey - Structure from Motion (*Cardno*)

Ground Survey – LiDAR (*M. Olsen OSU*)

Ground Surveys of Liquefaction-Induced Lateral Movements

Cubrinovski et al. 2017 NZBEE

VIVERSITY OF ANTERBURY

Documenting Liquefaction-Induced Building Damage

ANTERBUR

survey by Bray & de la Torre