RECENT EARTHQUAKES & GEER

GEESD IV Sacramento

Presentation by J. David Frost Georgia Institute of Technology

Session Outline

Complimentary efforts...Youd

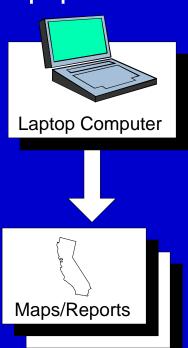
GEER...Bray

Pisco 8/15/07 Response...Rodriguez-Marek

Niigata Chuetsu-Oki 7/16/07 Response...Kayen

Panel & Audience Discussion...ALL

Traditional Field Data Collection


Technology for "Smarter" Engineer

Field Reconnaissance Equipment

Analysis & Data Reduction Equipment

Example of Technology Usage

- Integrated data acquisition and analysis software
- Record feature and/or area damage
- Links location, photographic and other digital data
- Keeps engineer "within data loop"
- Facilitates consistent/complete data
- Upload data into GIS extension

Example Data Categories

Building

Residential
Commercial
Industrial
Religious
Government
Educational

Lifeline Infrastructure

Water
Sewer
Gas
Telecom
Electrical

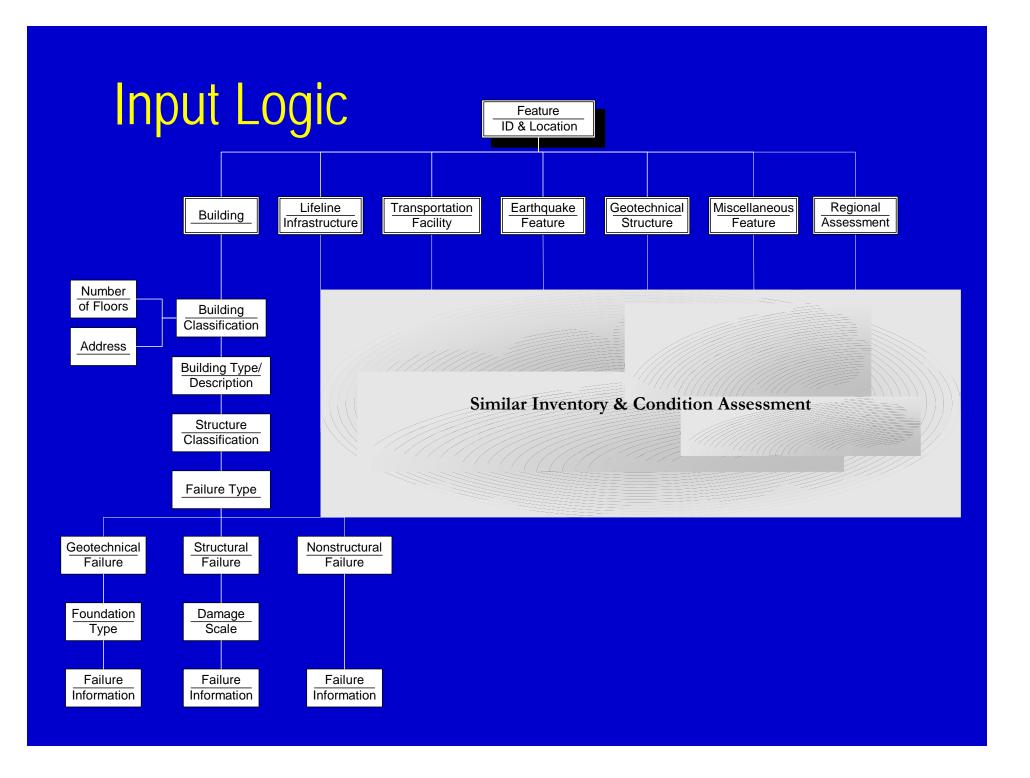
Transportation Facility

Road Rail Bus Ferry Port Airport

Geotechnical Structure

Dam/Levee Retaining Wall Landfill Embankment Cut Slope

Earthquake Feature


Landslide
Fault Rupture
Circular Sand Blow
Linear Sand Blow
Ground Cracking
Lateral Spread

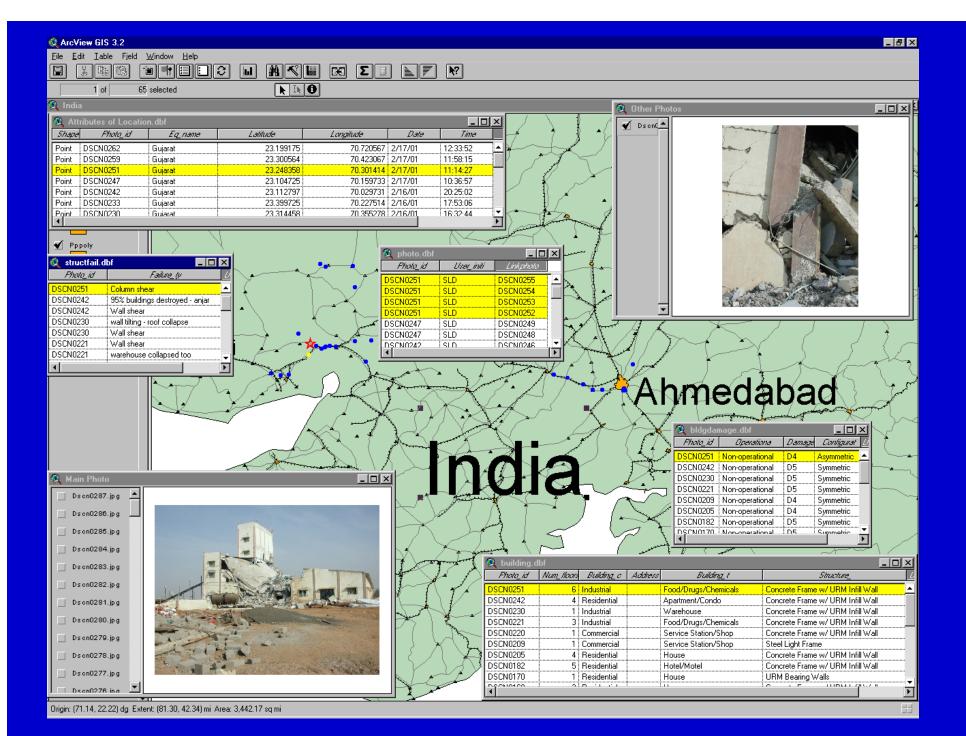
Miscellaneous Feature

Seismograph Wall

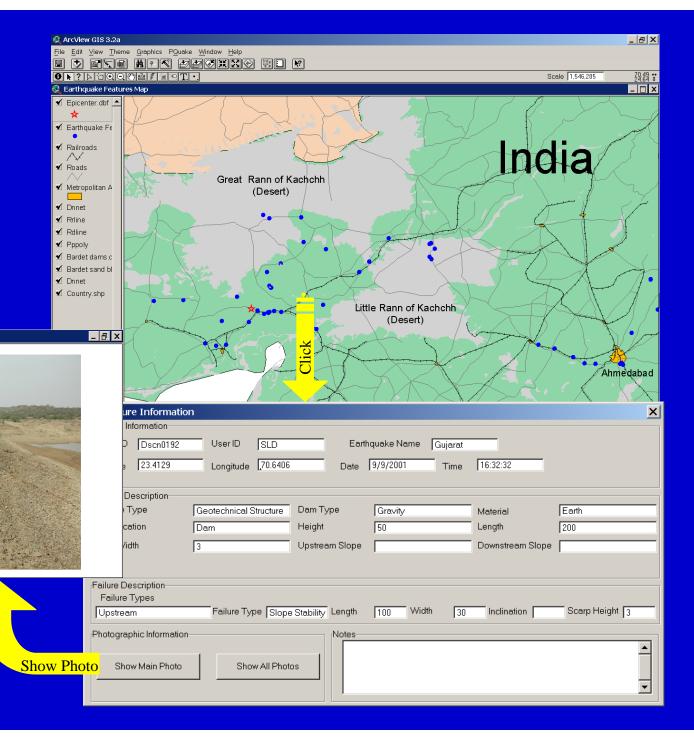
Regional Assessment

Block Street District Village Town City

Dam Failure Example



Back-end – (e.g. ArcGIS® extension)


- Rapidly assimilate data from multiple users
- Query data based on information type
 - e.g. Select all 5 story buildings that collapsed from soft story failure
 - e.g. Show location of all sand blow features
- Query individual features
- Create comprehensive maps of damage sites
- Real-time reconnaissance planning
- Integrated transfer of data to "home base"

Example Event Query

Query			
Feature Type C All	General 🗆 L	Jser	□ Date
⊕ Building	Feature Classification Number of Floors		
C Lifeline Infrastructure	✓ Residential C All		O All
C Transportation Facility	Commercial		0 =
C Geotechnical Structure	☐ Industrial		O >=
C Earthquake Feature	☐ Religious		O <= OR
C Miscellaneous Feature	☐ Government		© >= 3 & <= 6
C Regional Assessment	☐ Educational		(•)= J
Structure Type			<u>'</u>
☐ Wood - Light Frame	ight Frame		Shear Walls
☐ Wood - Commercial Industrial		▼ Concrete Frame w/ URM Infill Wall	
☐ Steel Moment Frame		☐ Precast-Conc Tilt-up Walls	
☐ Steel Braced Frame		☐ Precast-Conc Frm w/ Conc Shear Walls	
☐ Steel Light Frame		RM Bear Wall w/ Wood or Metal Diaph	
☐ Steel Frame w/ Conc Shear Walls		RM Bear Wall w/ Precast Conc Diaph	
☐ Steel Frame w/ URM Infill Walls		☐ URM Bearing Walls	
☐ Reinf Conc Moment Resisting Frame ☐		☐ Mobile Home	
Failure Type:			
○ All			
☐ Insufficient reinforcement ☐ Brace buckling			
Column shear			
Column rotate	☐ Wall buckling		
☐ Plastic hinge ☐ Plastic deform	✓ Wall shear		
Slide off found.	✓ Soft story ☐ Found, shear		
Shear wall crack	□ Weld damage		
☐ Shear wall bend	□ Spalls/cracks		
☐ Shear wall joint	☐ Short column		
☐ Brace yielding	□ Racking		
Run Query Save Current Query Exit			
of records selected.			

Feature Query

What About "Event Planning"


Soft Story Failures

Example of Technology Usage

- Utilized for rapid pre-event screening of buildings with a potential soft story for municipal program.
- Software based on a form that city engineers created
- Types of data recorded
 - Building/structure properties
 - Usage (know where to search for survivors)
 - Vulnerabilities
 - Possible solutions/retrofit
- Upload field data into Access database

Soft Story Example

Soft Story Example (cont.)

Beyond Handheld Systems

Next Generation...

Next Generation...

Important Future Role of Technology

- Opens up new opportunities for integration of georeconnaissance studies in education and research
- Ability to involve larger "Response Team" than those operating in immediate earthquake zone
- Ability to access areas that may have been isolated by event damage
- Ability to "virtually take" students to field and show them consequences of poor engineering and/or unanticipated loading conditions

Research & Development Issues

- Data collection protocols and standards
- Platform issues
- Multi-scale system integration
- Tele-reconnaissance
- Information compression and transmission
- Simulation analysis and feedback

Conclusions

- All geo-engineering studies rely on information.....
- Digital technologies offer key to ensuring information of highest quality in sufficient quantity is available in a timely manner.....
- Urgent need to develop protocols for data collection and information archiving.....
- Geo-earthquake engineering education can be significantly enhanced by adoption of these technologies into practice.....

Thank you.